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[PAPER

Grey Neural Network and Its Application to Short Term

Load Forecasting Problem

SUMMARY In this paper, a novel type of neural networks
called grey neural network (GNN) is proposed and applied to
improve short term load forecasting (STLF) performance. This
work is motivated by the following observations: First, the fore-
casting performance of neural network is affected by the ran-
domness in STLF data. That is, poor performance results from
large randomness and vice versa. Second, the grey first-order
accumulated generating operation (1-AGO) is reported having
randomness reduction property. By the observations, the GNN
is proposed and expected to have better STLF performance. The
GNN consists of grey 1-AGO, the piecewise linear neural network
(PLNN), and grey first-order inverse accumulated generating op-
eration (1-IAGO). Given a set of STLF data, the data is first
converted by grey 1-AGO and then is put into the PLNN to per-
form forecasting. Finally, the predicted load of GNN is obtained
through grey 1-IAGO. For comparison, the original STLF data
is also put into the PLNN itself. With identical training condi-
tions, the simulation results indicate that with various network
structures the GNN, as expected, outperforms the PLNN itself
in terms of mean squared error.

key words:  grey 1-AGO, piecewise linear neural network
(PLNN), short term load forecasting (STLF), grey neural net-
work

1. Introduction

The short term load forecasting (STLF) problem has
been widely studied in the field of electrical power and
energy systems. The reason is that accurate forecast-
ing helps in the real-time power generation, efficient
energy management, and economic cost saving. Up to
present, approaches proposed for STLF problem can be
roughly divided into four types: time series approach,
regression approach, expert-based approach, and neu-
ral network based approach. Since 1990, the neural
network based approach is getting more and more at-
tention for its promising results in STLF. In the be-
ginning, researchers are trying to demonstrate the fea-
sibility of applying neural networks to STLF problem
in power engineering. Recently, efforts are put to im-
prove the forecasting performance of neural networks.
A wide variety of methods to improve STLF perfor-
mance have been reported as in [1]-[19] which include
network structure modification, learning algorithm in-
novation, hybrid system, and data preprocessing. Here
we concentrate ourselves on the data preprocessing ap-
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proaches. In [20], it is noticed that the randomness in
the STLF training data affects the forecasting perfor-
mance of neural networks, i.e., increasing the random-
ness degrades the performance and vice versa. Thus, it
is expected that better forecasting performance can be
achieved if the randomness in the training data can be
reduced. An approach to reduce the randomness inher-
ent in the training data is the preprocessing technique,
clustering. Given training data set T'(®), the objective
of clustering is to collect homogeneous data together
and to divide T into subsets, based on a similarity
measure. Then each data subset is used to train a cor-
responding neural network. Note that in general the
randomness in each clustered subset of I'® is less than
that in T'(®). Consequently, better forecasting perfor-
mance of neural networks is expected. Up to present,
several clustering approaches have been proposed. In
[12], a heuristic clustering approach to partition the
training data by the days of the week is proposed while
the training data is hourly partitioned in [11]. In [10],
a ’follow the leader’ approach is used to cluster the
training data. In [9], a fuzzy approach partitions the
training data based on fuzzy curve. In [2], a neural
approach based on modified Kohonen clustering skill is
employed to partition load data while neural gas is used
in [15].

This paper introduces the grey preprocessing ap-
proach, the first order accumulated generating opera-
tion (1-AGO) [21], to reduce the randomness in STLF
data. Then a grey neural network (GNN) which is
based on the piecewise linear neural network (PLNN)
(22] is applied to perform load forecasting. There are
two main reasons to explain why PLNN is applied in
this paper. First, PLNN is a type of modular neural
networks. Many researchers have indicated that modu-
lar neural networks have better load forecasting perfor-
mance than global type neural networks such as multi-
layer perceptron (MLP) neural networks [23], since the
training data set is partitioned. Moreover, it is demon-
strated in [22] that PLNN usually performs as well as an
MLP.with equivalent required multiplies in many data
sets. Second, as described later in Sect.4 an on-line
training is demanded in the given STLF example and
PLNN meets the requirement because it is of fast con-
vergence and training efficiency properties [22]. Since
training an MLP is a time-consuming task, thus MLP
is not appropriate because an on-line training is a key
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issue in the given STLF problem.

This paper is organized as follows: A brief review
of grey 1-AGO and first order inverse AGO (1-IAGO)
[21] is given in Sect.2. Next, the structure of GNN is
introduced and its cost function is discussed as well. In
Sect. 4, the proposed GNN is applied to an STLF exam-
ple where the forecasting results of PLNN and GNN are
compared. Finally, conclusions and further researches
are described in Sect. 5.

2. Grey 1-AGO and 1-IAGO

Let T = {(x, (0 ,yp ) for 1 < p < N,} be a power
(0)

load forecasting data set where M-dimensional xp " is

the pth input vector of historical power load, y(o)
the pth desired output or k-step ahead power load to
be predicted, and N, is the total number of patterns.
To effectively reduce the randomness in data, the grey
1-AGO needs satisfy the following two conditions: (i)
data is of same sign, and (ii) the ratio between adjacent
data in T'© should be within 1 order in magnitude.
Assume that Conditions (i) and (ii) are satisfied. From
I'®, a new data set T' is formed by grey 1-AGO as
follows.

The grey 1-AGO converted input vector, x,, of x,(P)
is given as

k
=Yz (n) (1)

for 1 <k < M , where x(o)(k) and z,(k) are elements

of xﬁ, ) and X, , respectively. As for desired output y( )

by grey 1-AGO the new output ¥, is found as

M
v =y + Y 2(n) (2)

n=1

By (1) and (2), the new data set T' = {(xp,yp), for 1 <
p < Np} is formed.

From (1), it is easy to recover xé )(k) from z,(k)
as

féo)(k) = zp(k) — zp(k — 1) (3)

Similarly, yp () can be obtained from (2) as

(0) =y, — Z :E(O) (4)

The reverse operation of grey 1-AGO is called grey 1-
IAGO.

It is reported that grey 1-AGO is able to reduce
the randomness in data. To understand and to visualize
the idea, the data SO = {1,4,2,5,3} , which satisfies
Conditions (i) and (ii) described previously, is given as
an example. By (1), the grey 1-AGO converted data
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Fig.1 The original data and grey 1-AGO converted data.

is found as S = {1,5,7,12,15}. Both S and S are
plotted in Fig.1 which indicates that the grey 1-AGO
converted data S is monotonic increasing and less ran-
dom than the original data S (©). This example helps
understanding that the grey 1-AGO is able to reduce
the randomness in data.

3. Grey Neural Network

In this section, the piecewise linear neural network
(PLNN) [22] is first reviewed from which the proposed
grey neural network (GNN) is derived. Then the pro-
posed GNN based on PLNN is given and the relation-
ship of cost functions associated with GNN and PLNN
is established.

3.1 Piecewise Linear Neural Network (PLNN)

For its simplicity and efficiency, the PLNN is employed
in this paper. The structure of PLNN is depicted in
Fig.2. In the training stage of PLNN, it involves three
steps: (i) initializing modules, (ii) expanding the num-
ber of modules, and (iii) eliminating less useful mod-
ules. Here, we emphasize on the signal flow in PLNN.
For details of PLNN, one may consult [22]. The func-
tion of each block in Fig. 2 is described in the following.
Given data set T' = {(%p,yp), for 1 < p < Ny}, the in-
put vector x, is augmented by constant 1. Next the
global linearity is removed from y, where A, is the co-
efficient vector for the global linear mapping from x,, to
y,. Then the augmented input vector x, is normalized
and used to find clusters ¢; for 1 < j < K, where K
is the prescribed maximum number of modules used.
Once clusters c¢; are obtained, weighted distance mea-
sures d;(xp, ¢;) for 1 < j < K are calculated. Then se-
lection functlon s(+) directs x, to the module whose d;
is minimum and disables other modules. Consequently,
an estimate of y,, Up, is found through the selected
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Fig.3 The structure of grey neural network (GNN).

module. For each module, it performs linear mapping
and therefore is called linear module. When g, is ob-
tained, the squared error of y, and g, is accumulated
to find mean squared error (MSE) which is used to up-
date weights in linear modules during training stage.
The output of PLNN g, is obtained by adding back the
component removed in Block 2.

3.2 Grey Neural Network and Tts Cost Function

The structure of grey neural network (GNN) based on
PLNN is depicted in Fig.3. With the PLNN given in
Fig. 2, the proposed GNN is constructed by cascading
grey 1-AGO in the input side and grey 1-TAGO in the
output side of PLNN. In other words, the grey 1-AGO

preprocesses input vector x,(JO) as in (1) and desired out-

put y;(,o) as in (2) while the grey 1-TAGO post-processes
estimated output g, as in (4). Note that the random-
ness in STLF data set affects the forecasting perfor-
mance of neural networks. Increasing the randomness
degrades the performance and vice versa. The purpose
of grey 1-AGO is to reduce the randomness inherent in
the STLF data set. Consequently, there is a hope that
GNN has better forecasting performance than PLNN.

Define the cost function of PLNN with data set

' as

K[, N

MSEpinn = [M Y - yéo))QJ (5)
k=1 p=1

where yj,(,o) is an estimate of yz(,o) and Nj is the number

of patters assigned to module k for 1 < k < K. The

sum of Ny is equal to N,. Similarly, the cost function

of GNN related to data set I is given as

K 1 Ny,
MSEqgnyNn = Z ’:le Z(@)p - yp)2:| (6)

k=1 p=1

For GNN, note that training data set I'®) is con-
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verted by grey 1-AGO and the new training data set I'
is put into PLNN. Therefore, the relationship of cost
functions or MSE for GNN and PLNN needs to be
established. The relationship ensures that the com-
parison between GNN and PLNN is made under same
ground. To relate MSEp,nyn and MSEgny, (6) is
rewritten as

k=1 p=1 i=1
M 2
= (yp - ZIIE;O) (”)}
=1
K[ M
=S | Y - y,&‘”f}
k=1 p=1
=MSEpLNN (7)

where grey 1-TAGO is applied in the second equality.
From (7), it is obvious that the forecasting perfor-
mances of GNN and PLNN are compared on the same
basis since MSEGNN = MSEPLNN.

4. Application of GNN to STLF Problem

In this section, the proposed GNN is applied to an
STLF example. First, the STLF data set used here is
described. Next the reason to use PLNN in the simula-
tion is stated and then the determination of the num-
ber of inputs and the number of modules is described.
Finally, simulations are performed and the results of
PLNN and GNN are compared.

4.1 Data Description

The STLF data set used in the simulation is called
TU.10. This data set was obtained from TU Electric
Company in Texas. The first ten inputs are last ten
minutes power load in megawatts (MW) for entire TU
electric utility, which cover a large part of north Texas.
The output is power load fifteen minutes in the future
from the current time. All powers were originally sam-
pled every fraction of a second, and averaged over one
minute to reduce noise. The total number of patterns
is 1415. In the data set TU.10, M = 10 and N, = 1415.
Note that data set TU.10 is of positive sign which sat-
isfies Condition (i) of grey 1-AGO described in Sect. 2.
Also, Condition (ii) is met in TU.10 since the power
load does not change abruptly in general.

The data set TU.10 is used to train neural networks
such that the problem of load frequency control (LFC)
in a multi-area interconnected power system [24] can be
relieved. One major problem in LFC is that area load
demand fluctuations change faster than the area gener-
ation response rate which results in load upsets. In [25],
it indicates that an appropriate load forecasting of the
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next fifteen to thirty minutes gives better performance
of LFC. With the forecasted load, generation control
can be accomplished beforehand and therefore reduces
operation costs of multi-area interconnected power sys-
tem. This is why the power load fifteen minutes ahead
from the current time is used as the desired output.

4.2 Determination of Neural Network and Its Struc-
ture

Since the predictive LFC forecasts power load fifteen
minutes ahead, in general an on-line training is required
such that a satisfactory forecasting performance can be
achieved. As for on-line training, fast convergence and
network structure are two key issues. As reported in
[22], PLNN is of fast convergence and training efficiency
properties. Consequently, it is employed in the simula-
tion. Note that the complexity of network structure in
PLNN is a function of the number of inputs Nipp, the
number of modules K, and the number of outputs Noy:-
In this example, only N;,, and K should be determined
since N,y is fixed at one. As for Njyp, a small number
is not appropriate for it may contain insufficient in-
formation and result in poor forecasting performance.
On the other hand, a large N, requires more train-
ing time. Also, it is noted that a further input away
from predicted data has less effect on forecasting per-
formance in the k-step ahead time series prediction in
general. Consequently, Nin, = 10 is employed in the
given data set.

In the practical application of PLNN, we use pat-
tern capacity [26], which is the total number of training
patterns memorized perfectly, to help in the determi-
nation of K. The pattern capacity of PLNN is given
as

Cp= K(Ninp + 1) (8)

As a rule of thumb, C,, is chosen as N, /10 for better
generalization of trained PLNN. In the case of Ninp =
10, K is obtained as

141.

Thus K = 13 is set in the actual STLF application.
4.3 Simulations and Comparison

The simulation procedure is described in the following.
To compare the performance of PLNN and GNN, the
original data set TU.10 is first put into PLNN with
structure 10-K-1, for 11 < K < 20, where 10 is the
number of inputs, K is the number of modules pre-
scribed, and 1 is the number of output. Since the
PLNN is a linear type of neural networks, it is of fast
convergence property. Consequently, 15 training itera-
tions are sufficient for all 10-K-1 structures of PLNN.
The M SEpynn for each different structure is recorded.
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Fig.5 The predicted outputs and desired output.

Next, TU.10 is preprocessed by grey 1-AGO as given
in (1) and (2). The grey 1-AGO converted data set
is denoted as TU.10a. Then the GNN is trained with
identical training conditions as that for PLNN. For each
different structure the M SEgnn is recorded. Finally,
the MSEpryn and MSEgnN are compared.

By the simulation procedure described in the previ-
ous paragraph, the MSEprnny and M SEqann for dif-
ferent K are plotted in Fig. 4. As expected, it indicates
the GNN outperforms the PLNN for all cases. With
the desired outputs, the predicted outputs of PLNN
and GNN in the case of K = 13 are depicted in Fig. 5.
The scatter plots associated with PLNN and GNN for
the case of K = 13 are, respectively, given in Figs. 6
and 7 where the diagonal line is an auxiliary line for
better observation.

One interesting result in Fig.4 is that the
MSEgyy for K = 16 is less than that for 17 < K <
19. One possible reason is that the case of K = 16 has
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better clusters and therefore has better performance.
The simulation results of PLNN and GNN are surmma-
rized and compared in Table 1 where £% denotes the
improvement on MSFE in percentage and is defined as

_ MSEpiny — MSEgnn

E
% MSEprnn

x 100% (10)

5. Conclusions and Further Researches

This work is motivated by two observations in the fol-
lowing. First, the forecasting performance of neural
network is affected by the randomness in STLF data.
Second, the grey 1-AGO is of randomness reduction
property. By the observations, in this paper we first
proposed the GNN whose structure consists of the grey
1-AGO, PLNN, and the grey 1-IAGO. Next, the GNN
is applied to a STLF problem. As expected, the GNN

901
Table 1  Simulation results of PLNN and GNN.

MSEpnn(MW)Z | MSEgnn(MW)2 | E%
K =11 6055.22 6008.73 4.6
K=12 6007.92 5636.42 6.1
K =13 5651.48 5448.76 3.5
K=14 5412.43 5329.88 1.5
K=15 5321.55 5041.29 5.2
K=16 5185.90 4682.50 9.7
K=17 5169.96 4952.16 4.2
K =18 5169.57 4831.55 6.5
K =19 5016.19 4717.62 5.9
K =20 4879.28 4638.49 4.9

outperforms the PLNN. The simulation results indi-
cate that the GNN with different network structures
has better forecasting performance, whose range from
1.5% up to 9.7%, than the corresponding PLNN. With
simple preprocessing grey 1-AGO and post-processing
grey 1-IAGO, the forecasting performance of PLNN has
been improved.

In the given STLF example, data set TU.10 con-
sists of power load feature only. However, some useful
features, such as weather conditions, day information,
and so forth, may help in more accurate forecasting.
With these extra features, the conditions required in
grey 1-AGO could fail to be met and thus the GNN
may not improve the forecasting performance. Conse-
quently, our further researches on the proposed GNN
will concentrate on the release of Conditions (i) and (ii)
required in grey 1-AGO such that other useful features
can be included in STLF data set and the GNN can be
extended to mapping problems other than STLF prob-
lem.
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